• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Primary Cementing
  • Remedial Cementing
  • Plug Cementing
  • Job Execution
  • Post-job results interpretation
  • Equipment
  • Laboratory
  • Mission
  • About
  • Contact and Questions?
  • My Cementing Challenges

Better Well Cementing for ALL

The Leading Online Support Hub for Better Oil Well Cementing.

Liner Cementing Challenges and Solutions

August 7, 2016 By Lenin Diaz Torres 6 Comments

Liner Cementing Challenges and Solutions

1.   Considerations for Pre-flush/Spacer

In liner cementing operations, the bottom wiper plug, which is responsible for mechanically separating the cement slurry from the spacer ahead, is sometimes not available. This availability issue is due to the characteristics of many common liner tool systems in use.

This limitation results in increased front-end contamination of the cement slurry with the spacer (and sometimes mud as well). The simple reason is related to the rheology and density of the cementing fluids.

The cement slurry and spacer are designed to work on their way up in the annulus for mud removal. On the contrary, while flowing down the pipes, this purposely designed rheology and density will likely favor fluid intermixing. The magnitude of this fluid intermixing and contamination depends on many factors, but primarily on fluid characteristics, length and ID of the pipes.

The main consequences of this effect are summarized below:

  • Diminished mud removal. Partial or full replacement of individual fluid properties of the leading cement slurry and spacer result in a contaminated fluid front. This endangers mud removal and in most cases would favor channeling.
  • Diminished cement slurry mechanical properties. Depending on the percentage of cement slurry in the mixture, there is a delay in compressive strength development and its final value reduced. In some cases, for greater contamination, cement slurry could suffer liquid-solid separation or segregation before being able to set.
  • Increased static gel strength development of the intermixed fluid volume. The cement contaminated fluid volume may develop lower thickening time or increased gelling tendency due to inter-fluid incompatibility. This change in structure risks the capacity to POOH the DP at the end of a job.
  • Higher ECD in the open hole due to increased friction pressure, potentially leading to losses while cementing.
  • Increased risk of plugging the liner hanger (reduced flow area).

The effect of the absence of a mechanical barrier (bottom plug) between the cement slurry and spacer ahead is the formation of two zones of contamination: 1) While fluids flow down the pipes (zone 1), and 2) While flowing up in the annulus (zone 2).

The end consequence of this increased contamination occurring in liner cementing has the potential to affect the cement bond higher up in the annulus.

To remove this adverse effect, consider the following solutions.

Solutions acting both in zone 1 and zone 2 (mitigation)

  • Fluid properties (rheology and density).

In literature, we see the relationship between mud removal and these two properties widely explained. However, as mentioned before, the ‘best’ values for rheology and density for mud displacement in the annular gap is more than likely the ‘worst’ value to prevent fluid intermixing on the way down the pipes.

For best results, it’s better to design the characteristics of the fluids to be 60 to 80% of the optimum for mud removal in the open hole. This percentage is affected by the trajectory/deviation of the well (direction of gravity vs. direction of flow). For the vertical wells, it starts with 60% up to about 80% for the highly deviated ones.

  • The fluids volume.

Increasing the volume of either the cement slurry or the spacer will help to push the contaminated front-end to the overlap and above the liner hanger.

The drilling engineer and the cementing company will be required to work closely. The ‘best’ solution to maximize the presence of un-contaminated cement in the zone of interest will be a balance between the following:

  1. The position of the liner hanger (length of the overlap);
  2. Method and associated risk to remove excess contaminated fluids on top of the liner hanger (length of contaminated fluids on top of the liner hanger);
  3. Cementing fluid characteristics, such as rheology and density (volume of contaminated fluids).

In any case, accurate simulations conducted by the cementing company are essential.

  • Elimination of the spacer.

In some cases, we can confirm compatibility between the cement slurry and the mud by proper laboratory testing. (For WBM for example). In this instance, we can completely remove the spacer from the cement job design.

Removing the spacer will reduce the volume of the contaminated front-end, and it would ease the design of the cement job significantly. However, this could require the use of additional chemicals in the portion ahead of the cement slurry, like a surfactant or other additives to mitigate the effects of the contamination with mud.

Solutions acting in zone 1 (prevention)

  • Use of a double plug liner tool system.

The only appropriate preventive measure. The drilling engineer will be required to consider this alternative (available systems, cost, risk, etc.) from the very conceptualization and design of the well.

Solutions acting in zone 2

The solutions applicable in the annular space will provide an improvement across the entire open hole. The overall action will be more significant for wells with more than 30o deviation.

  • Centralization (prevention).

Improved stand-off will reduce the chances of channeling in the annular space. (Also, reducing any further increment of the volume contaminated at the front-end).

  • Rotation (mitigation).

A rotation will help increase the effective capacity, and it is mandatory for highly deviated wells.

2.   Fluids Placement challenges in liner cementing

In liner cementing, (and more relevant to deviated wells), the following elements are especially essential to consider in the cementing job design and fluid placement.

  • Restriction to flow in the liner hanger

We need to consider the liner hanger in the cementing job design to prevent the inducement of losses. It constitutes a restriction to flow and increases the friction pressure and consequently the ECD during the cement job. This restriction is a limiting factor for mud removal in regards to pumping rate and fluids rheology.

  • Proper hole cleaning before the setting of the liner

The cement slurry due to its characteristics, higher density, and rheology, has an improved carrying capacity during the cementing operations where annular velocities are comparable to those while drilling. In case cuttings or solids are still in the hole due to insufficient hole cleaning prior running the casing, these solids should be lifted and carried ahead by the cement slurries. Not doing so will bring the risk of plugging the annular gap or the liner hanger. This would ultimately cause a sudden increase in pumping pressure leading to total losses or even un-displaced cement left inside the casing.

  • Coupling event between wiper dart and top plug at the liner hanger

It is a common practice to lower the pumping rate when the drill pipe wiper plug is about to reach the liner hanger to latch the casing top plug. However, this reduction in rate hinders mud removal, when cementing fluids are already transiting the annular gap. This reduction of pumping rate below the recommended value for mud removal has to be reduced or even avoided, altogether.

We recommend the following actions:

  1. Proper estimation of the DP capacity to liner hanger, by including the reduction of internal diameter at the tool joints;
  2. Conduct a risk analysis with the liner hanger company
  • Temperature simulation.

Well geometry and trajectory will affect the circulating temperature in liner cement differently in comparison to casing cementing.

In cementing liners, the maximum circulating temperature value considered for defining the thickening time of the cement slurry is not necessarily at the bottom of the hole. Particularly for deviated wells, the maximum circulating temperature is often located at the liner hanger. In any case, temperature simulations are mandatory for liner cementing.

Please let me know if you find this article useful, or have any comments or suggestions.

Cheers

L. Diaz

me




 

Related posts:

  1. Cement, Spacer, all there. But where’s the wiper plug?
  2. Workover Cementing Techniques 2: Squeeze Cementing
  3. Primary Cementing Checklist (Customer)
  4. Cement Slurry Laboratory Testing

Filed Under: Primary Cementing Tagged With: best practices, cement contamination, cementing, liner, liner cementing, primary cementing

Article Posted By:

Lenin Diaz is an oil industry specialist with 26 years of technical and operational expertise in fluids, cementing, water control and shut-off. A distinguished track record spanning BP, Schlumberger, and NAPESCO. Lenin lives in Tenerife, Spain and is the creator of this website. Read More…

Reader Interactions

Comments

  1. christopher says

    December 10, 2018 at 9:01 am

    gd morning from here my name is Christopher agubor working with NPDC Nigeria . please I want find out if there is any or special way to run liner hanger in horizontal well or deviated well also

    Reply
    • Lenin Diaz says

      December 14, 2018 at 1:58 pm

      Hi Christopher
      First of all thanks for visiting my site and for your question
      To answer your question, please understand that I am a cementing expert not a liner specialist, but I like to give it a try.
      The most important thing would be to be able to run the liner to bottom, so the drill pipe, running string and liner tool configuration needs to account for that and be designed using a torque and drag application. This would include the selection of centralizers to lower friction and facilitate both running down and further rotation if planned.
      Also due to the hole profile and shape, acknowledging difficulties for hole cleaning the shoe must be such to facilitate passing thru certain spots, if encountered
      Liner Top packers are usually included along with an ample overlap between casings, and sometimes the setting procedure varies, before or after cementing … and when is after cementing, it can really complicates cementing. Why ? well controlling the top of cement and cement-contaminated fluids, thickening time or gel strength development can be tricky depending on depth, temperature, length of operation, mud in the hole, etc.
      From cementing point of view, additional challenges derives from the drilling phase and resulting hole quality, same as they do for running the liner.

      Hope this helps

      I also invite you to look in http://my-spread.com for more detailed and specific answers about running liners, DP and liner tool configurations.

      Cheers
      L. Diaz

      Reply
  2. RAOUF says

    October 15, 2019 at 6:52 pm

    Hi Diaz,

    Is it possible to cement a liner with two cement slurry densities. In our case, we are drilling with a MW of 1.62sg and LOT EMW is 1.67sg. We are drilling in a very narrow window because we had a kick earlier and we cannot reduce MW less then this value. If we use a slurry of 1.90sg of density, we will exceed the fracture gradient. For this reason, I wish to have your advice.

    Many thanks in advance

    Raouf

    Reply
    • Lenin Diaz says

      October 21, 2019 at 11:34 am

      Hi Raouf,
      Yes, it is possible to use Lead and Tail in Liners. Just please consider that good cement at the previous casing shoe and in the overlap (sometimes) is required for zonal isolation.

      Cheers
      L. Diaz

      Reply
  3. Ahmed says

    January 25, 2021 at 10:05 pm

    Hi Diaz,

    Please from your experience, what is the solution if floats are leaking after doing a liner cmt job…

    Thanks

    Reply
    • Lenin Diaz says

      January 29, 2021 at 7:05 pm

      Hi Ahmed, a possible solution is to allow the well to balance itself, since in liners the annular clearances are relatively small, friction pressure would at in our favour, depending on the slurry properties (Yield point, gels), preventing cement goes too high above the landing collar.
      This risk however should be properly assessed before the job, if space above the landing collar is an issue, for example the zone of interest for the lower completion, space for perforating guns, etc. All to prevent an extra run to mill excess cement inside the casing.
      Another consideration is the length of the liner overlap, for instance to ensure the TOC remains above previous casing shoe after self-balancing the cement column.
      In any case, something we should avoid is unnecessarily long thickening time, in practical terms. This includes properly accounting for all safety factors with effect on the thickening time, like the method to calculate BHCT, including static periods, including circulation and POOH time plus the actual safety factor, among other things. Excessive thickening time would have an effect on setting time (Gel + CS development) and could make the slurry easier to flow back and for longer time, let by hydrostatic forces.
      In any case, CemPRO+ has an output called the balance point, which basically tells where the TOC of cement would be in the absence or failure of float equipment
      L. Diaz

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Trango DEPM is a team of Oil&Gas professionals with broad experience in the O&G industry. Working on onshore and offshore projects around the world, including most vivid and challenging areas as Saudi Arabia, US Marcellus shale and North Sea, but also small on small projects, requiring individual approach, we are well equipped to help you plan, budget, implement and execute your drilling project successfully. We also cooperate with number of other professionals with experience in such areas as drilling, geology, geophysics, procurement or logistics. This allows us to fully run your project or just support you in desired areas of expertise, depends on you needs.

How I survived the 2016 Downturn and the current difficult times?

Find the content you need

Archives

24 Page Free Primary Cementing Guide

Click this image to take a look. It is comprehensive and easy to follow too!

In 2016, I launched Better Cementing for All. Now, I want to keep it alive.

For more than 26 years, I have worked in oil well cementing, offering my services to some of the largest oil corporations in the world and committing myself to excellence. I have mastered my role, and in doing so, I have accrued a skill set that is extremely valuable to my fellow professionals. Eager to do whatever I can to help them, I have owned and operated Better Cementing for All since 2016.
Let me tell you what Better Cementing for All does and what it means. A resource for all oil industry professionals and for cementers both established and prospective, this is a non-profit resource that I established in order to do nothing but serve and make an impact on people who are looking to build careers for themselves in cementing.
From primary cementing to remedial cementing to plug cementing to post-job results, I do it all, and I am comfortable answering in-depth questions about each and every one of these topics. I also offer tools and tips for jobseekers, general self-development advice, and guidance for equipment choices. TO put it simply, this is the go-to spot for anyone who wants to know anything about oil well cementing.
The problem, however, is that covid-19 has made the structure of the website seem untenable. I am trying to juggle the work that I do and my non-profit initiatives and finding it all unhealthy and unsustainable. I want to keep Better Cementing for All up and running, but to do that, I need your help.


My NEW introductory VIDEO

Recent Posts

Max Out Your Cement Coverage

If we consider the main variables to ensure proper mud in hole replacement with cement: stand-off, … [Read More...] about Max Out Your Cement Coverage

Cementing Flowchart

In recent weeks, I received some reader requests to include cement job processes or procedures as … [Read More...] about Cementing Flowchart

Cementing. Challenges across permeable zones

This article will provide you with some actionable suggestions for cementing across permeable zones. … [Read More...] about Cementing. Challenges across permeable zones

Forensic Cementing

Forensic is a term usually associated with crimes. Criminal forensics is the use of science to … [Read More...] about Forensic Cementing

Cement Slurry design Basics

First, here is a handy table to simplify the process of cement slurry design: Additive … [Read More...] about Cement Slurry design Basics

well cementing pre-job cement challenge question

Remedial Cementing with Coiled Tubing (animation)

Though I am far from being an animation expert, during my training courses I have always wanted to … [Read More...] about Remedial Cementing with Coiled Tubing (animation)

Need urgent help?

WhatsApp me at this number: +34 657 07 01 78

Footer

Recent activity

Visit our latest posts and help others by adding a comment.

Make your contribution and help keep Better Cementing for All alive!

Now more than ever, we are facing a loss of expertise in our industry, and Better Cementing for All is a unifying force, featuring interactions among industry professionals, knowledge sharing through posts, and other valuable pieces of content that we need to preserve.

Recent Comments

  • Merit on Cementing Equipment from Serva SJS Limited
  • Lenin Diaz on Cementing Equipment from Serva SJS Limited
  • Lenin Diaz on All you need to know about Bentonite in Cement Slurries
  • Lenin Diaz on Cementing Equipment from Serva SJS Limited
  • Lenin Diaz on Cementing Equipment from Serva SJS Limited
  • Lenin Diaz on Suicide Squeeze Cementing: risky but valid
  • Samuel Bekele Bedjiga on All you need to know about Bentonite in Cement Slurries

Recent Posts

  • Max Out Your Cement Coverage
  • Cementing Flowchart
  • Cementing. Challenges across permeable zones
  • Forensic Cementing
  • Cement Slurry design Basics
  • Remedial Cementing with Coiled Tubing (animation)
  • Plug and Abandonment Webinar (Español)
  • Webinar series (II). Quality Assurance in Cementing Operations (Spanish)
  • Webinar series (I). Log interpretation (Spanish)

Submit your email

&middot Better Well Cementing For All is owned by L. Diaz © 2023 &middot TOS & Privacy Policy &middot Web Design &middot